

Considerations for Analysis of Data Collected by Wearable Digital Health Technology in Clinical Trials

Andrew Potter, PhD Division of Biometrics 1, OB/OTS/CDER, FDA BASS 2021 October 27, 2021

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Outline

- Wearable Accelerometer measuring Activity
 - Missing Data
 - Different Follow-up Time
 - Statistical Methods
- Case Study: Sleep measurement
 - Week day vs weekend variation
 - Missing Data
- Case Study: Circadian Variation

Digital Health Technology

- Digital Health Technology (DHT)
 - Broad category of technology relating to health applications
- Focus in this presentation on DHTs measuring clinical endpoints or physiological data in clinical studies
- Examples:
 - Smart watches
 - Continuous blood glucose monitors (CBGM)
 - Activity monitors (accelerometers)
- CDRH's DHCoE: <u>https://www.fda.gov/medical-devices/digital-health-center-excellence</u>

Activity Data

- A wearable accelerometer is used to measure free living exercise
 - Data is recorded when the device is worn
 - Aggregated into 1 minute epochs
 - At least 1440 data points per day
- Periods without recorded activity
 - Sleep?
 - Not wearing the device?
- Patients may wear the device for different times each day
- What may happen? How does it effect statistical analysis?

Movement Data from Acceleration Sensors

F

Gyllensten, IC, Physical Activity Recognition in Daily Life using a Triaxial Accelerometer, Master's Thesis, 2010.

Example Daily Activity Counts

- Sample subject from NHANES 2003-2004 dataset
- Each curve activity count at a minute
- Red curve is mean of daily curves
- How to summarize?
 - The entire curve?
 - Features of the curve?

Two Frameworks

Functional Data Analysis

- Considers the data, $Y_{ij}(t)$, to be continuous in time measured: daily, hourly, sub-hourly
- Assumes model:

$$Y_{ij}(t, X_i) = F_j(t, X_i) + e_i(t)$$

- Where,
 - $F_j(t, x_i)$ is the functional response for the jth treatment arm
 - May include random effects for subjects
 - $-X_i$ is any covariates
 - $e_i(t)$ is the error
 - May be white noise or correlated noise
- How to determine treatment effect?

Longitudinal Summary Statistics

- Considers the data, \tilde{Y}_{ijs} , to be summaries of the observed $Y_{ij}(t)$ measured at time points such as: weekly, monthly, etc
- Potential model:
 - Mixed effects models with random effects for subject's trajectories
 - Marginal model using an unstructured or structured covariance matrix to address within patient correlation
 - Generalized estimating equations
- Does the summary statistical and model capture the relevant treatment effect?

CASE STUDY – ACTIVITY DATA AND MISSINGNESS

Activity Data as a Study Endpoint

- Consider an investigation drug X that is hypothesized to improve exercise
- Patients are followed for 6 weeks
- Can a wearable accelerometer measure exercise?
- Endpoint is related to daily total exercise change over 6 weeks
 - Total steps?
 - Time spent in moderate to vigorous physical activity?
 - Walking speed?
- What time scale for baseline exercise and Week 6 exercise?

Verification and Validation of DHT measurements

- Addresses the question "Does the DHT measure what it proports to measure?"
- A property of how the DHT takes the measurements
- Examples:
 - How accurate and precise are measurements of blood glucose measurements from a CGBM?
 - How accurate and precise are measurements of acceleration in an activity monitor?

Verification and Validation of DHT measurements

- Addresses the question "Does the DHT measure the clinical endpoint in the target population?"
- Depends on the outcome, patient population, DHT, etc.
- May require studies in target population
- Examples:
 - How accurate and precise are functions of measurements (e.g., time in range) of blood glucose from a CGBM?
 - Is a step measured by the DHT a step in a Parkinson's disease patient?
 - Are activity thresholds capturing a patient's physical function?

Potential Statistical Analyses

- ANCOVA
 - Use baseline and 6 week exercise data
 - Missing data: Unbiased estimates under MCAR assumption for missing data
- MMRM on the weekly summarized data
 - Uses every week of data
 - Missing data: Unbiased estimates under MAR assumption for longitudinal and MCAR for within day and week measurements
- Mixed model on the daily summarized data
 - Uses every day of data
 - How to incorporate non-linear temporal effects?
 - Missing data: Unbiased estimates under MAR assumption for missing days and MCAR for within day measurements
- Other methods?

How data can go missing

- Missing data can occur at multiple time scales (minute, day, week, etc)
- At the minute scale:
 - DHT does not record the physical quantity
 - Patient removes DHT to go swimming
 - Etc
- At the day scale:
 - Patient is feeling sick and does not put on the DHT
- At the week scale:
 - Patient drops out of the study

Missing Data in Activity Data – Within Day

MCAR

MAR

MNAR

F

Μ

Μ

Μ

Days

Μ

Μ

Days

Days

Missing Data in Activity Data – Monotone Dropout and Within Day

MCAR

F

MNAR

Intervals within Days

		Μ	Μ
		Μ	Μ
		Μ	Μ
		Μ	Μ
		Μ	Μ
		Μ	Μ
М		Μ	Μ
		Μ	Μ
М	Μ	Μ	Μ
Μ	Μ	Μ	Μ

			Μ
			Μ
			Μ
			Μ
	М		Μ
Μ	М		Μ
Μ		Μ	Μ
Μ			Μ
			Μ
			Μ

Days

Days

Days

FDA

A Common Approach for Activity Data

- Calculate daily activity summary endpoint A_{day} if
 - Patient wears accelerometer for at least T hours
 - T is often 8, 10, or 12 hours
 - Consider this a valid day
- Calculate weekly activity summary endpoint A_{week} if
 - Patient has at least W (often 3-4) valid weekday measurements
 - Patient has at least U (often 1) valid weekend measurements
- Some proposals include standardizing A_{day} to a common day length
- This method assumes that missing epochs are missing at random (MCAR)
 - Is this justifiable?

Alternative Approaches

- Imputation by borrowing between days
- Censoring partial day observations
- Imputation by fitting smooth functions within each day

CASE STUDY - SLEEP

Total Sleep Time

- Measure of how long a person sleeps during the night
- Usually measured with polysomnography (PSG)
 - PSG determines sleep/awake by measuring brains electrical activity
 - Read by expert readers
- Can motion detected by an accelerometer be processed to determine time spent sleeping?
 - Algorithms classify each time epoch into sleep/awake using motion data
 - Utility depends on sensitivity and specificity of this classification
 - Provides daily sleep data

Total Sleep Time Derived from Acceleration Sensor

FDA Weekday to Weekend Variability In Total Sleep Time Weekday mornings 600 -Weekend mornings Minutes Asleep 400 200-0 -

Wed

Day of the Week

Thu

Sun

Mon

Tue

Fri

Sat

Weekday to Weekend Variation - Sleep

• Case Study on:

Ę

- Analysis of the longitudinal evolution of the daily sensor data
- Illustrate an approach to analyzing longitudinal evolution using total sleep time (TST) as a summary measure of daily sensor data
 - Compare changes in TST between a new sleep medication to placebo over four weeks
 - Focus on modeling the linear trend in TST in both groups
 - Use all observed data
 - Calculation of TST at specific time points conducted after statistical modeling
- Framework extends to multiple sleep parameters and functional models

Case Study - Sleep

- Simulated data:
 - 300 patients
 - 30 minute improvement in TST by day 15
 - Similar change in TST to several NDAs submitted to FDA
 - Complete data vs. Monotone dropout
- Measure treatment effect by:
 - Difference in TST at four weeks
 - Estimate after modeling vs. calculate average before modeling (NA if any day missing)
 - Average TST trajectory in each group model on the linear part of the trend
- Use two statistical models
 - Linear mixed model
 - Linear functional form of time with random slopes and adjustment of day of week
 - Factor for week with days correlated within week and adjustment of day of week
 - Factor for week and no adjustment for day of week in the model
 - Generalized estimating equation (GEE) model robust to misspecification of covariance between days

FDA

Case Study - Sleep

• True treatment effect

 $F(t|TRT = active) - F(t|TRT = plb) = \frac{a}{1 + e^{\{-b(t-c)\}}}$

Linear mixed model 1

$$Y_{ikl}(t_j) = \beta_0 + b_{0,i} + (\beta_1 + b_{1,1})t_j + \beta_2 \times TST_{baseline,i} + (\beta_3 + \gamma_1 t_j) \times TRT_k + \sum_{l=1}^{7} \delta_l I(day_{il} = l) + \epsilon_{ikl}(t_j)$$

$$(b_0, b_1) \sim N(0, \mathbf{G}), \mathbf{G} = \begin{pmatrix} \sigma_{00} & \sigma_{01} \\ \sigma_{01} & \sigma_{11} \end{pmatrix}$$
$$\epsilon_{ikl}(t_j) \sim N(0, \sigma_{\epsilon}^2 \mathbf{I})$$
$$(b_0, b_1) \perp \epsilon_{ikl}(t_j)$$

i indexes the patient k indexes the treatment arms j is the observed days l indexes the day of the week

=

 (b_0, b_1) : patient level random intercept and slop $\epsilon_i(t_i)$: error

Fixed Effects: β_0 : intercept β_1 : time effect β_2 : baseline TST effect β_3 : treatment effect γ_1 : treatment by time effect δ_l : day effect

Linear Mixed Model 2

Ţ

$$Y_{ijkl} = \beta_0 + \beta_1 \times TST_{baseline,i} + \beta_2 \times TRT_k + \sum_{j=1}^{W} \alpha_j I (week_j = j) + \sum_{j=1}^{W} \sum_{k=1}^{1} \gamma_{jk} I (week_j = j) \times TRT_k + \sum_{l=1}^{7} \delta_l I (day_{il} = d) + \epsilon_{ijkl} \quad \epsilon_{ijkl} \sim N \left(0, \begin{pmatrix} \Sigma_{11} & \cdots & \rho_2 \\ \vdots & \ddots & \vdots \\ p_2 & \cdots & \Sigma_{WW} \end{pmatrix} \right)$$

$$\frac{\text{Fixed Effects:}}{\alpha_j: \text{ week effects}} \qquad \qquad \Sigma_{jj} = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$

Linear Mixed Model 3

$$Y_{ijk}$$

$$= \beta_0 + \beta_1 \times TST_{baseline,i} + \beta_2 \times TRT_k + \sum_{j=1}^{W} \alpha_j I (week_j = j)$$

$$+ \sum_{j=1}^{W} \sum_{k=1}^{1} \gamma_{jk} I (week_j = j) \times TRT_k + \epsilon_{ijkl}$$

$$Y_{ijk} = \frac{1}{7} \sum_{l=1}^{7} Y_{ijkl} \qquad \epsilon_{ijk} \sim N \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1W} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2W} \\ \vdots & \ddots & \vdots \\ \sigma_{W1} & \sigma_{W2} & \dots & \sigma_{WW} \end{pmatrix}$$

Ţ

All other terms defined previously

Generalized Estimating Equation (GEE)

$$Y_{ikl}(t_j) = \beta_0 + (\beta_1)t_j + \beta_2 \times TST_{baseline,i} + (\beta_3 + \gamma_1 t_j) \times TRT_i + \sum_{l=1}^{7} \delta_l I(day_{il} = d) + \epsilon_{ikl}(t_j)$$

Working correlation matrix is AR(1) Standard errors estimated with sandwich estimator All other terms defined previously

F

Generalized Estimating Equation (GEE)

$$Y_{ikl}(t_j) = \beta_0 + (\beta_1)t_j + \beta_2 \times TST_{baseline,i} + (\beta_3 + \gamma_1 t_j) \times TRT_i + \sum_{l=1}^{7} \delta_l I(day_{il} = d) + \epsilon_{ikl}(t_j)$$

Working correlation matrix is AR(1) Standard errors estimated with sandwich estimator All other terms defined previously

F

Simulated Clinical Trial – The Data

Example Subjects

Subject Specific Change from Baseline in TST

Simulated Clinical Trial – The Data with Dropout

Example Subjects

F

Subject Specific Change from Baseline in TST

Triangles – Weekday Red Circles - Weekend

P

Population Average Total Sleep Time Trajectories

Complete Data

Monotone Dropout

LMM3 – Pre-model averaging for week

GEE – Linear Function of Time

FDA

LMM3 – Pre-model averaging for week

Estimated Treatment Effects

	Model	Complete Data				Monotone Dropout			
		Estimated Daily Δ (min)	95% Confidence Interval		p- value	Estimate Daily ∆ (min)	95% Confidence Interval		p-value
TST difference at Day 28	LMM1 – Linear Function of Time and random slopes with day term	37.3	12.8	61.8	0.003	31.8	2.0	61.5	0.037
	GEE – Linear Function of Time and AR1 working correlation with day term	25.3	0.93	49.7	0.041	17.3	-12.9	47.5	0.262
TST difference at Week 4	LMM2 – Week as Factor with day term	24.8	9.1	40.6	0.002	14.3	-4.3	32.79	0.131
	LMM3 – Pre- averaged week without with day term	24.9	3.4	46.4	0.023	5.0	-23.6	33.6	0.347 ₃₆

CASE STUDY – CIRCADIAN VARIATION

Ţ

5000 MMM 15 20 15 20 Pump Output (mL/min) 2000 2400 2400 mL/min 15 20 10 15 20 1400h 1600h 1800h 2000h 2200h 0000h 1000h Hours 0000h 0200h 0400h 0600h 0800h 1200h Days Hours Hours Hours

An Important Feature: **Circadian Variation in Sensor Data**

- Blood flow data from a ventricular assist device recorded every 15 min.
- Circadian patterns present in multiple types of sensor data

FDA

Extracting Features – Fourier Transform

Circadian Cycle Feature

- Focuses on periodic features in a signal
 - Represents the strength of a signal over a range of frequencies
 - Signals with circadian
 variation have a peak at
 1 cycle/day

Longitudinal Evolution of Circadin Variation

Days

Conclusions

- Missing data approaches can affect both the mean and standard error estimation
- Different models can provide useful information even when misspecified
- Need to conduct model assessment
- Need to conduct model diagnostics
- Need to develop and conduct assessments of missing data approaches

References

- Catellier DJ et al, Imputation of missing data when measuring physical activity by accelerometry. *Med Sci Sports Exerc*. 2005;37(11 Suppl):S555-S562. doi: <u>10.1249/01.mss.0000185651.59486.4e</u>
- Song J et al, A semiparametric model for wearable sensor-based physical activity monitoring data with informative device wear, *Biostatistics*, Volume 20, Issue 2, April 2019, Pages 287–298. doi: <u>https://doi.org/10.1093/biostatistics/kxx073</u>
- Byrom B and Rowe DA, Measuring free-living physical activity in COPD patients: Deriving methodology standards for clinical trials through a review of research studies, Contemporary Clinical Trials, Volume 47, 2016, Pages 172-184. doi: <u>https://doi.org/10.1016/j.cct.2016.01.006.</u>

